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XII. Radiation n the Solar System : its Effect on Temperature and its
Pressure on Small Bodies.

By J. H. Poy~ting, Se.D., F.R.S., Professor of Physics tn the
University of Bermingham.

Received June 16,—Read June 18, 1903.

PART 1L

TEMPERATURE.

WHEN a surface is a full radiator and absorber® its temperature can be determined at
once by the fourth-power law if we know the rate at which it is radiating energy. If
it is radiating what it receives from the sun, then a knowledge of the solar constant
enables us to find the temperature. We can thus make estimates of the highest
temperature which a surface can reach when it is only receiving heat from the sun.
We can also make more or less approximate estimates of the temperatures of the
planetary surfaces by assuming conditions under which the radiation takes place,t
and we can determine, fairly exactly, the temperatures of very small bodies in
interplanetary space.

These determinations require a knowledge of the constant of radiation and of either
the solar constant or the effective temperature of ‘the sun, either of which, as is well
known, can be found from the other by means of the radiation constant. It will be
convenient to give here the values of these quantities before proceeding to apply them
to our special problems. ' l

* A surface which absorbs, and therefore emits, every kind of radiation, is usually described as “black,”
a description which is obviously bad when the surface is luminous. It is much better described as “a full
absorber ” or ““a full radiator.” :

T This was pointed out by W. WIEN in his report on “Les Lois Théoriques du Rayonnement ”
(“ Congreés International de Physique,’ vol. ii., p. 30). He remarks that STEFAN’s law enables us to
caleulate the temperatures of celestial bodies which receive their light from the sun, by equating the
energy which they radiate to the energy which they receive from the sun, and states that for the earth
we obtain nearly the mean temperature, using the reflecting power of Mars, while the temperature of
Neptune should be below - 200° C.

VOL. CCIT.—A 357. 18.12.03
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526  PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM:

The Constant of Radiation.

If R is the energy radiated per second per square centimetre by a full radiator at
temperature 6° A (where A stands for the absolute scale), the fourth-power law states

that
R = o*,

where o is the constant of radiation.
According to KurLBAUM® the constant is

o =532 X 107% erg.

The Solar Constant.

The solar constant is usually expressed as a number of calories received per minute
by a square centimetre held normal to the sun’s rays at the distance of the earth.
The determinations by different observers differ so widely that it is not necessary for
our present purpose to consider whether the constant really exists or whether there
are small periodic variations from constancy.

AxasTROM estimated the value as 4 calories per square centimetre per minute, and
this value is adopted by Crova as very probable.t When converted to ergs per

second this gives
S, = 028 x 107 ergs/cm.? sec.,

where the suffix denotes that it is ANGsTROM’S value.

Lancrey] assumed that the atmosphere transmits about 59 per cent. of the energy
from a zenith sun and from his measurement of the heat reaching the earth’s surface
he estimated the value of the constant at 3 calories. This gives

S, = 021 X 107 ergs/em.? sec.,

Roserr§ assumed a transmission of 78 per cent. from the zenith sun, but Wrirsox and
(irAY]|| consider that 71 per cent. represents Rosertr’s numbers better than 78 per cent.
If in LaAnNcLeY's value we replace 59 per cent. by 71 per cent. we get 2'5 calories.
This gives

S, = 0175 X 107 ergs/em.? sec.

¢ Wied. Ann.,” vol. 65, 1898, p. 748,

¢Congrés International de Physique,’ vol. 3, p. 453,

¢ Phil. Mag.,” vol. 15, 1883, p. 153, and ¢ Researches on Solar Heat.’
¢ Phil. Mag.,” vol. 8, 1879, p. 547.

¢Phil. Trans.,” A, 1894, p. 383.

L b =~ K
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 527

The Radiation from the Sun’s Surface.

If s is the radius of the sun’s surface, R the radiation per square centimetre, then the
total rate of emission is 4ws*R. This passing through the sphere of radius =, at
the distance of the earth and with surface 4m?, gives

478°R = 47r®S,
where S is the solar constant.

Hence

2 . 7\2

R = «7—@— S = <9 23—)5—19—> S = 46,0008,
s

Corresponding to the three values of S just given we have three values of R, viz.,

R, =129 x 101; R, = 0945 x 101 R, = 0805 x 101,

The Effective Temperature of the Sun.

If we equate the sun’s radiation to o, where o is the radiation constant, we get 6,
the “effective temperature ” of the sun, that is the temperature of a full radiator
which is emitting energy at the same rate.

Thus
582 % 10754, = 129 x 10},
whence
6, = 7000° A approximately.
Similarly

6, = 6500° A ; 0, = 6200° A.

Wirson* made a direct comparison of the radiation from the sun with that from
a full radiator at known temperature. Assuming a zenith transmission of 71 per cent.,
he obtained 5773° A as the effective solar temperature. If we put

46,0008 = 532 X 107° X 57734
we get
S = 0128 X 107,

This is no doubt too low a value. Either then WILsoN’s zenith transmission was less
than 71 per cent. or KURLBAUM’S constant is too small.

The low value is probably to be accounted for chiefly by the first supposition.
WiLsoN points out that if x is the true value of the transmission, his value of the
temperature is to be multiplied by (71/x)t. If we take 6, = 6200° as the true value

then @ will be given by _
o = (4 x 71 = 55,

This low value is not necessarily inconsistent with the much higher value 71 per cent.
* ¢Roy. Soe. Proc.,” vol. 69, 1901-2, p. 312.
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528  PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM: .

used above in finding Rosertr’s solar constant, for no doubt the transmission varies
widely with time and place, and we have no reason to assume that 177 calories
per minute, obtained by LANGLEY, would have been received from the zenith at the
time and in the place where WiLsoN was making his determination.

The Effective Temperature of Space.

In determining the steady temperature of any body as conditioned by the radiation
received from the sun, we have to consider whether it is necessary to take into account
the radiation from the rest of the sky. If it receives S from the sun, p from the rest
of the sky, and if its own radiation is R, then in the steady state

R=S+4p or R—p=»>5

It behaves therefore as if it were receiving S from the sun, but as if it were placed
in a fully radiating enclosure of such temperature that the radiation is p. This
temperature is the “ effective temperature of space.”

The temperature may perhaps be more definitely described as that of a small full
absorber placed at a distance from any planet and screened from the sun. Various
well-known attempts have been made to estimate this temperature, but the data are
very uncertain. The fourth-power law however shows that it is not very much
above the absolute zero, if we can assume that the quality of starlight is not very
different from that of sunlight.

According to r’Hermire * starlight is one-tenth full moonlight.  Full moonlight is
variously estimated in terms of full sunlight. Lancrev T takes it as ', s- These
two values combined give sunlight as 4 x 10 starlight. But starlight comes from
the whole hemisphere, while the sun only occupies a small part of it. In comparing
temperatures we have to use the brightness of sunlight as if the whole hemisphere
were paved with suns.

If B is the illumination of a surface at O, fig. 1, lighted by 5
the sun in the zenith at S, and if #s® is the area of the sun’s IS Lo
diametral plane, then B/ms® is the illumination at O due to
each square centimetre. If the hemisphere were all of the 6
same brightness as the sun, the illumination at O due to the 0

ring of sky between 6 and 0 + d¢ would be Fig. 1.

B Y
- 27 sin B cos 60,
s*

where 7 is the distance of the sun.

* <1 Astronomie,’” vol. 5, p. 406.
© 1 “First Memoir on the Temperature of the Surface of the Moon.” ¢ National Academy of Sciences
vol. 3. ‘


http://rsta.royalsocietypublishing.org/

A

JA \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 529
Integrating from ¢ = 0 to 0 = «/2, we have
Total illumination = Br?/s* = 46,000 B.

The illumination from a hemisphere paved with suns is therefore 46,000 X 4 X 10°
= 1'84 X 10! times that from the stellar sky.

If we assume that the quality of the radiation is the same in both cases, that is,
if we assume that the energy is proportional to the light part of the spectrum, we
have by the fourth-power law
effective temperature of sun

('184 x 10)

. effective temperature of sun

655

Effective temperature of space =

As the temperature of the sun probably lies between 6000° A and 7000° A,

this gives
Effective temperature of space = 10° A,

If, then, a body is raised by the sun to even such a small multiple of 10° as, say, 60°,
the fourth-power law of radiation implies that it is giving out and therefore receiving
from the sun more than a thousand times as much energy as it is receiving from
the sky.

The sky radiation may therefore be left out of the account when we are dealing
with approximate estimates and not with exact results, and bodies in the solar
system may be regarded as being situated in a zero enclosure except in so far as they
receive radiation from the sun.

Temperature of a Planet under Certain Assumed Conditions when placed at o
dustance from the Sun equal to that of the Earth.

The real earth presents a problem of complexity far too great to deal with. T
shall therefore consider an ideal earth for which certain conditions hold, more or less
approximating to reality, and determine the temperature of its surface on the
assumption that it receives heat from the sun only.

Let us suppose :—

1. That the planet is rotating about an axis perpendicular to the plane of its orbit,
which is circular.

This will give us too high a temperature at the equator, and the absolute zero,
which is too low, at the poles, The mean, however, over the planet, will probably be
not much affected by the supposition.

2. That the effect of the atmosphere is to keep the temperature in any given

latitude the same, day and night.

This is not a great departure from reality. On the sea, which is more than two-

VOL. CCII—A, 3 Y
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[ehFa]

.,
while even on the land it is, in extreme cases, not more than 15° C., which is not

thirds of the earth’s surface, the daily range is very amall, of the order of 1° or 2

a large fraction of the absolute temperature.

3. That the surface and the atmosphere over it at any one point have one effective
temperature as a full radiator. This is no doubt a departure from reality. How
wide a departure we have no present means of estimating.

4. That there is no convection of heat from one latitude to another.

This is a very wide departure from reality. But, as we shall see below, the mean
temperature of the planet is very little affected by convection, even if we assume that
it is so extensive as to make the surface of uniform temperature.

5. That the reflexion at each point is {;th of the radiation received.

This is probably of the order of the actual reflexion from the earth. According to
Lancrry® the moon reflects about Lth of the radiation received. The earth certainly
reflects less. The temperatures determined hereafter are proportional to the 4th root
of the coefficient of absorption. Tven if this coeflicient is as low as 09 its 4th root
is 0:974. Hence if the actual value is anywhere between 09 and 1, the assumed
value of 0°9 will not make an error of more than 2% per cent. in the value of the
temperature.

6. That the planet ultimately radiates out all the heat received from the sun, no
more and no less.

This again is very near the condition of the real earth, which, on the whole,
radiates out rather more than it receives—perhaps on the average a calorie per
square centimetre in three days.

Making these six suppositions, let us caleulate the temperature of various parts of
this ideal planet.

Consider a band between latitudes X and
M+ d\. The area receiving heat from the sun - /\
at any instant, if projected normally to the roasddd_/ 7Ca57% X

stream of solar radiation, is (fig. 2)

27 cos A d\ cos A = 272 cos® Ad\,

where 7 is the radius of the planet.
If S is the solar constant, this band is
absorbing, with coefficient 09,

098 % 2% cos? Ad\.
Fig.

g 2.

But the band all round the globe is radiating
equally, according to the second supposition, and the radiating avea is

2ar cos A . rdA = 27r? cos Ad\.

% « Third Memoir on the Temperature of the Moon.” ¢National Academy of Sciences,” vol. 4, Part 2,
p- 197.
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES.

Hence the radiation emitted per square centimetre is

0'9 8 2r7cos N dh _ 0°9 Scos A
2ur?cos NdN 77 ’

If the effective temperature in this latitude is 0,, we have

09 Scos A = 532 X 10_59)\4,
w .
or
09 x 10°%8\t
el A Nk dhd A\
2 < 532 > 008

531

It we put A = 0, we get the equatorial temperature corvesponding to cach of the

different values of S given above, viz. :

Equatorial 8, = 350° A approximately.
9[ = 3250 A
0, = 312° A

3 2

The temperature in latitude A 1s
0, = equatorial temperature X cost\.

Thus, in latitude 45°, it is 0°917 equatorial temperature.
The average temperature over the globe is

) 32 F 27r? cos My, cost N d\,
4re Jg

where 0y is the equatorial temperature

= 0, [ *cost N\ = 0, ‘é ™ Iﬁggg — 0930,
8

The average temperature, then, is little more than 1 per cent. above the temperature

in latitude 45°.
If we use the three values of 6, just given, we have

Average 0, = 325° A approximately.
35 0/ = 302° A i
» 0, = 290° A .

Our fourth supposition was that there is no convection by wind or water from one
latitude to another. Let us now go to the other extreme and suppose that the
convection is so great that the temperature is practically uniform all over the globe.

3 Y 2
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532 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM:

We then have a receiving surface virtually =% and a radiating surface 4m®  Then
we get the radiation emitted per square centimetre-

098m? __ 98
dwr® 407

and if @ is the temperature required for this,
N 93
532 X 1079604 = 2 ;
e X 40
whence
Uniform 6, = 330° A approximately
. 0, = 307° A .

. 0,=293° A .

values not more than 5° above those obtained for the average on the supposition of
no convection.

Comparing these results with the temperature of the real earth, it is seen at once
that they are of the same order.

The average temperature of the earth’s surface is usually estimated at about 60° F.,
say 289° A. The temperature of the atmosphere is on the whole decidedly lower
than that of the surface below it. We should therefore conclude that the earth’s
effective temperature is somewhat below 289° A.

Again, the earth and the atmosphere, taken as one surface, do not constitute a
full absorber, but are to some extent selective. Hence we should expect the earth to
be, if anything, of a higher temperature than a full absorber and radiator under the
same conditions. '

Tor both these reasons, then, the ideal planet might be expected to have a tempera-
ture below rather than above 289° A. The lowest estimate obtained above is
therefore probably nearest to the truth, and it would appear that even that is
somewhat too high. This tends to show that, if we accept KurrBaUM'S value of
the radiation constant, we cannot put the solar constant so high as 3 or 4, but must
accept a value much nearer to that which 1 have called RosurT1’s value, viz., 2°5.

Tn what follows I shall therefore take Roserir’s value and the resulting value of
the solar temperature, viz., 6200° A.

The calculation made above may be turned the other way round, and may be
used for a

Determination of the Effective Temperature of the Sun from the Average
Temperature of the Earth.
Assuming that the real earth may be replaced by the ideal planet already con-

. . . 098
sidered, the radiation per square centimetre from the equatorial band is - . But the
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 533

radiation per square centimetre from the sun’s surface is 46,0003. If then 0y is the

‘earth’s equatorial temperature, and 6 is the solar temperature,

098
ki

: 46,0008 = 9134‘ : 684.’

whence
0, = 04/20.

The average temperature of the earth is 0°93 of the equatorial temperature. If
this average is 0,, then
HA - 65/21.0.

If we take the temperature of the real earth as 289° A, and as being equal to that
of the ideal,
Os = 21'5 X 289° = 6200° A approximately.

Upper Lumat to the Temperature of a Fully Radiating Surface exposed normally
to Solar Radiation at the Distance of the Earth from the Sun.

The highest temperature which a full radiator can attain is that for which its
radiation is equal to the energy received. This will only hold when no appreciable
quantity of heat is conducted inwards from the surface.

To obtain the upper limit in the case under consideration, we have to equate the
radiation to the solar constant, which we shall now take as 8, = 0175 X 107. Then,

532 X 107%0* = 0175 x 107,
and
0 = 426° A,

If the surface reflects some of the radiation and absorbs a fraction « of that talling
on it, then the effective temperature is

xt X 426° A,

The Limating Temperature of the Surfuce of the Moon,

We may apply this result to find an upper limit to the temperature of the moon’s
surface.  This upper limit can only be attained when it is sending out radiation as
rapidly as it receives it, and is therefore conducting no appreciable quantity inwards.

. reflected radiation 1 ST
of ~=—————-— = .%. Thisis
emitted radiation 67

We shall take LANGLEY'S estimate (loc. cit.)
represented nearly enough by x = £

The upper limit of temperature of the surface exposed to a zenith sun is, therefore,

0 =426 X (I)' = 426 X 0967 = 412° A,
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534 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM:

This, then, is the upper limit to the temperature of the hottest part of an airless moon,
For a surface at angle X with the line to the sun,

0, = 412 cost \.

If we take this as the law of temperature of the side of the moon exposed to the
sun, we can find the effective temperature of the full moon as seen from the earth,
w.e., the uniform temperature of a flat disc of radius equal to that of the moon,
sending to us the same total radiation.

If Ndo s the normal stream of radiation from 1 sq. centim. of surface of the
moon immediately under the sun sent out through a cone angle dw, that sent out in
direction A to the normal is N cos M dw. But 1 sq. centim. on the moon’s surface
inclined at A to the sun’s rays only receives cos N of the radiation received by the
surface immediately under the sun. It therefore sends in the direction of the earth,
also at N to the normal, only N cos® Adw. Hence the total radiation to the earth,
obtained by putting de = 27 sin 6 df and integrating is

SE

j N cos® A 2am? sin N dA
0 g ’

where m 1s the radius of the moon and r is its distance from the earth

mm Ny o m N
T T 8Ty
T 7
and
Np = 2N,

The effective temperature of the flat disc is therefore +/3 that of the surface
immediately under the sun at the same distance from it.

Then the effective average = 412 X +/% == 412 X 0'9 = 371° A. The upper
limit, then, to the average effective temperature of the moon’s disc is just below that
of boiling water.

This is very considerably above LANGLEY'S estimate, that the surface of the full
moon is a few degrees above the freezing-point. There can be no doubt that a very
appreciable amount of heat is conducted inwards. The observations during eclipses
by LancrLey® and by Borpproker show that some heat is still received from the
moon’s surface when it has entered the full shadow, and that it takes time after the
eclipse has passed to establish a steady temperature again. It might be possible to

* «Third Memoir, p. 159,
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 535

make some rough estimate of the amount conducted inwards from the Fourier
equation, but the problem is not an easy one. Perhaps we get the best estimate by
comparing the actual temperature with that above found.

If the actual temperature is taken as about % the upper limit, say 297° A, then
the radiation outwards is of the order +/% = 041 of that where no conduction
exists. Then nearly £ of the heat is probably conducted inwards.

If the moon always turned the same face to the sun instead of to the earth, the
upper limit would be approached.

Temperature of & Spherical Absorbing Solid Body of the Order 1 centim. in diameter
at the Distance of the FEarth from the Sun.

The calculation of the temperature of such a body is interesting for two reasons.
Firstly, the body will be at nearly the same temperature throughout, and secondly,
as we shall show in the second part of this paper, the mutual repulsion of two such
bodies, due to the pressure of their radiation, is of the same order as their gravitative
attraction.

If the radius of the body is @, its effective receiving area is wa?, and it receives

Ta*S ergs/sec.

Its radiating surface is 4wa® and therefore its average radiation per square

centimetre in the steady state is
ma®S/dma® = LS.

It we take S =25 cal./min. or 004 cal./sec., and if the conductivity is of the
order of that of terrestrial rock lying, say, between 001 and 0-001, it is evident that
a difference of temperature of only a few degrees between the receiving and the dark
surfaces will convey heat sufficient to supply radiation, 0°01 cal /sec., equal to the
average. Thus, if the conductivity is 0°001 and the diameter is 1 centim., a difference
of temperature of 10° suffices.

We may therefore take the temperature of the surface as approximately uniform
when the steady state is reached. Let the temperature be 6, and let the solar
temperature be fs. Then we have

A % : 46,000 8
and
_ 0
207
It
05 = 6200° A,

0 = 300° A approximately.

This will be the temperature of fully absorbing bodies smaller than 1 centim., so
long as they are not too small to absorb the radiation falling on them.


http://rsta.royalsocietypublishing.org/

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A\
) ¢

Y
A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

536 PROFESSOR J. II. POYNTING ON RADIATION IN THE SOLAR SYSTEM

Varation of Temperature with Distance from the Sun.

Since the radiation received varies inversely as the square of the distance from the
sun, that given out varies in the same ratio. The temperature of the radiating
surface varies therefore as the fourth root of the inverse square, that is inversely as
the square root of the distance.

This enables us to deduce at once the temperatures of the various surfaces and
bodies which we have considered, if placed at the distances of different planets as well
as at the distance of the earth. We have merely to multiply the results hitherto
Earth’s distance
Planet’s distance’

The following table contains the values of the temperatures at selected distances,
all on the absolute scale :—

found by

Tantg of Temperatures of Surfaces at Different Distances from the Sun.  All on
the Absolute Scale.

[— |
Equatorial | Average gffpa?:ii}fnzlt Average } Te;r;;;gm» Tempera-
At the Distance. | Square root | tempera- | tempera- 28 tempera- | ture of
is . 1 . ) reflecting | four-fifths
distance of |  Earth’s of ture ture | o eiohth | tre of [ that of small
the planct. | distance = 1. | (distance)~%| of ideal | of ideal | *"*%8 equivalent! absorbing
lanot lanet under dise.  |equivalent™
pranet. 1 pranet | yenith sun, e dise. phere.
I, II. 11T 1v. v. VL V1L VIIL. IX.
—— ‘ —_ e —— :u, TRV ——— i, S| e o ‘
Mercury . 0-3871 1-61 502 | 467 664 598 478 483
Venus . 0-7233 1-18 ; 368 42 486 438 350 358
| |
Barth . . 1-0000 1-00 ? 312 290 412 3TL 297 300
Mars . .| 15237 081 253 235 337 300 240 943
‘ | ! :
| Neptune.| 30-0544 ~ 0-18 56 | 52 T4 | 67 53 54
| | ! | f

We have omitted the larger planets except Neptune, since in all probability they
radiate heat of their own in considerable proportion. Neptune is inserted merely to show
how low temperatures would be at his distance if there were no supply of internal heat.

The results given in the table may not be exactly applicable to any of the planets,
but they at least indicate the order of temperature which probably prevails.

If, for instance, Mars is to be regarded as having an atmosphere with regulating
properties like our own, his equatorial temperature, Column IV., is probably far below
the temperature of freezing water, and his average temperature, Column V., must be
not very different from that of freezing mercury. 1If, on the other hand, we suppose
that his atmosphere has no regulating power, we get the upper limits not very
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES, 537

different from those in Columns VI. and VII. These are the limits for the bright
side, and they imply nearly absolute zero on the dark side. If we regard Mars as
resembling our moon, and take the moon’s effective average temperature as 297° A,
the corresponding temperature for Mars is 240° A, and the highest temperature is
4 x 337 = 270°. But the surface of Mars has probably a higher coefficient of
absorption than the surface of the moon—it certainly has for light—so that we may
put his effective average temperature on this supposition some few degrees above
240° A, and his equatorial temperature some degrees higher still.

It appears exceedingly probable, then, that whether we regard Mars as like the
earth, or, going to the other extreme, as like the moon, the temperature of his surface
is everywhere below the freezing-point of water. The only escape from this
conclusion that I can see is by way of a supposition that an appreciable amount of
heat is issuing from beneath his surface.

We cannot draw any definite conclusions as to the temperatures of Mercury and
Venus till we know whether they have atmospheres and whether they rotate on their
own axes. If we make both these suppositions and further suppose that their conditions
approximate to those of the ideal planet at their distances given in Columns 1V.
and V., then they may well be surrounded by hot clouds, as is sometimes supposed,
entirely screening their solid bodies from us. If, on the other hand, their atmospheres
are ineffective as regulators and if they always present the same face to the sun, the
hottest part of Mercury is probably not far from 650° A, and that of Venus not far
from 500° A.

If a comet consist of small solid particles of diameter of the order 1 centim. or less,
then the temperatures of these particles are given in Column IX. At one-quarter of
the earth’s distance, say 23 million miles from the sun, the temperature is 600°, about
the melting-point of lead. At one-twenty-fifth, say 3% million miles, it will be about
1500°, say the melting point of cast-iron. Nearer than this the temperature no
doubt increases rapidly, but the law of temperature, deduced from the inverse square
law for the radiation received, requires amendment, as that law was based on the
supposition that a hemisphere only is lighted by the sun, and that the whole of his
disc is visible from every part of that hemisphere. Both of these suppositions cease
to hold when the distance from the sun is only a small multiple of his radius,

PART 1L
RApiarion PRESSURES.

The pressure of radiation against a surfice on which it falls, first deduced by
MAxwEeLL from the Electromagnetic Theory of Light, is now established on an
experimental basis by the work of LeBepEW, confirmed by that of NicmoLs
and Hury,

VOL, CCIL—-A. 3 Z
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538 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM:

Though this pressure was first deduced as a consequence of the Electromagnetic
Theory, Barrorr showed, independently, that a pressure must exist without any
theory as to the nature of light beyond a supposition which may perhaps be put
in the form that a surface can move through the ether, doing work on the radiation
alone and not on the ether in which the radiation exists. Professor LarMor* has
given a proof of this pressure and has shown that it has the value assigned to it
by MAXWELL, viz., that it is numerically equal to the energy density in the incident
wave, whatever may be the nature of the waves, so long as their energy density for
given amplitude is inversely as the square of the wave-length. We may, in fact,
regard a pencil of radiation as a stream of momentum, the direction of the momentum
being the axis of the pencil. 1If T is the energy density of the pencil, U its velocity,
the momentum density may be regarded as E/U.

If the stream of radiation is being emitted by a surface, the surface is losing the
momentum carried out with the issuing stream, and is so being pressed backwards.
If the stream is being absorbed by the surface, then it is gaining the momentum and
is still being pressed backwards, the forces being in the line of propagation.

As the expressions for the radiation pressure in various cases are probably not very
well known, it may be convenient to state them here for use in what follows.

Values of Radiation Pressure n Different Cases.

If 1 sq. centim. of a full radiator is emitting energy R per second, and if Ndw is
the energy it is emitting through a cone de, with axis along the normal, then
in direction @ its projection is cos , and it is emitting N cos fdw through a cone do.
Putting do = 27 sin 0 df, and integrating over the hemisphere, we have

R = FN cos 0. 27 sin 0df = «N.
0

If we draw a hemisphere, radius 7, round the source as centre, the energy falling on
area dw 18 N cos Odw per second, and, since the velocity is U per second, the
energy density just outside the surface on which it falls is N cos 6/U7?, and this is
the rate at which the momentum is being received, that is, it is the normal pressure.
The total force on area 1?dw is N cos dw/U. This is the momentum sent out by
the radiating square centimetre per second through the pencil with angle de, in the
direction @, and is therefore the force on the square centimetre due to that pencil.

Resolving along the normal and in the surface we have

Normal pressure = N cos® 6 dw/U.

Tangential stress = N cos 6 sin 6 do/U.

* ¢<Brit, Assoc. Report,’ 1900 ; ¢ Encye. Brit.,” vol, 32, Art. ““ Radiation.’
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 539

Putting de = 27 sin 6 df and integrating over the hemisphere, we get

Total normal pressure = J’Z (N cos? 0. 27 sin 0d0/U) = 2aN/3U — 2R/3U.
0

Total tangential stress = 0, since the radiation is symmetrical about the normal.

It the surface is receiving radiation, let us suppose that the stream is a parallel
pencil S per second per square centimetre held normal to the stream, and that it is
inclined at @ to the normal to the receiving surface. The momentum received

per second is S cos §/U. This produces

Normal pressure = S cos® 0/U.

Tangential stress = S cos ¢ sin 6/U.

If the stream is entirely absorbed both these forces exist.
If the stream is entirely reflected, the reflected pencil exerts an equal normal force
and an equal and opposite tangential force, and we have only normal pressure of

amount 28 cos® §/U.
If only a fraction p is reflected, the incident and reflected streams will give

Normal pressure = (1 4+ p) S cos® /U.
Tangential stress = (1 — p) S cos 0 sin 6/U.

To the normal pressure must be added the pressure due to the radiation emitted
from the surtace.

Radvation Pressure in Full Sunlight.

If a full absorber is exposed normally to the solar radiation at the distance of the
P 7
earth the pressure on it is S/U, or 9-;—7;>1<01109 = 58 X 107% dyne/sq. centim.

The Radiation Pressures Between Small Bodies. Comparison with their
mutual Gravitation.

It is well known that the radiation force on a small body, exposed to solar radiation,
does not decrease so rapidly as gravitative pull on the body as its size decreases. If
the body is a sphere of radius @ and density p, and with a fully absorbing surface, and
if it is so small that it is practically at one temperature all through, it is receiving a
stream of momentum

ma®S/U

directed from the sun. Its own radiation outwards being equal in all directions has
zero resultant pressure.

3z 2
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540 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

The gravitative acceleration towards the sun at the distance of the earth is about
0:59 centim./sec.,  Then we have

Radiation pressure _ e

Gravitation pull — U X #ma’p X 059

The two will be equal when
=3 __ D
Y Up x 059
If we put
p=1;S=0175 x 107; U =23 x 10";
we geb
=74 X 107",

This is the well-known result that a body of diameter about two wave-lengths of
red light would be equally attracted and repelled if we could assume that a surface
so small still continued to absorb. But, of course, when we are getting to dimensions
comparable with a wave-length that assumption can no longer be made.

It is not, I think, equally well recognised that if the radiating body is diminished
in size, the radiation pressure due to it also decreases less rapidly than the gravitative
pull which it exerts. For the radiation decreases as the square of the radius of the
emitting body and its gravitative pull as the cube.

We can easily compare the radiation and gravitation forces between two bodies,
if for simplicity we assume that their distance apart is very great compared with the
radius of either.

Let AB, fig. 3, be two spheres with full radiating surfaces. Let their radii be

B
a ]
4] 7 e o
Fig. 3.

a, b and let their centres oo’ be d apart. If this distance is great compared with a
and b, each may be regarded as receiving a parallel stream from the other.

Let A send out a normal stream N de per square centimetre through cone dw,
while B sends out N’ dw.

B receives the stream of cross section «b? or the angle of the cone is #0%/d? and it
issues virtually from area wa?, for at B, A will appear as a uniformly bright flat disc.

Then the total force on B is

m*N  ab? _ wd’b’R
U d? Ud? 7
where
R = #N.
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 541

The force on A due to B is wa®*R//Ud?, where R’ = 7N,

These are not equal unless R = R/, 7., unless the two bodies have the same
temperature, an illustration of the fact that equality of action and reaction does not
hold between the radiating and receiving bodies alone. They no longer constitute
the whole of the momentum system. The ether, or whatever we term the light-
bearing medium, is material, and takes its part in the momentum relations of the
systemn.

It the surfaces are partially or totally reflecting, the forces are easily obtained.
Thus if one is totally reflecting, it can be shown that the force is only half as great as
when it is fully absorbing. But it will be sufficient to confine ourselves to the case of
complete absorption, followed by radiation of the absorbed heat equally in all directions
from all parts of the surface. More general assumptions do not alter the order of the
forces found.

If G s the constant of gravitation = 667 X 1078, and if p, p’ are the densities
of A and B, the gravitation pull is G 16”;‘2(59 P ,,

Then on B
Radiation push F' _~ 97a®0’R__
Gravitation pull P — 16GUn*a®?pp"’
or
F_ 9R
P 16GUmabpp’
Ha=10b; p=p; R=1532 X 107504 we have

o P
0= 2186 x 1070 /P
p ¥

If we suppose the two bodies to have the temperature of the sun say, 6200° A,
and its density, say 025, then F = P, when
gt = 475 X 62000 1078
0253 ’
then a = 83,500 centims. or 335 metres.

Of course two globes of this size would soon cool far below the temperature of the
sun, even if for an instant they could be raised up to it.

If we suppose € = 300° A--—-the approximate temperature of small bodies at
the distance of the earth from the sun—and if we take p =1, then F = P, when
a = 1962 centims.

Thus two globes of water—probably nearly full absorbers at 300° A—will at that
temperature neither attract nor repel each other if their radii are about 20 centims.

If the density of the spheres is 11, about that so often used for masses in the
Cavendish experiment, I' = P when

a = 178 centims.
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542 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

This does not throw any doubt on the results of Cavendish experiments, for it
only holds when the radiators are in an enclosure of very low absolute temperature.
In all Cavendish experiments the greatest care is taken to make the attracted body
and its enclosure of one uniform temperature.

The really interesting case is that of two small meteorites, in interplanetary space.
To judge from the specimens which succeed in penetrating the earth’s atmosphere
they are very dense. Let us suppose them to have density 5'5——that of the earth—
and temperature 300° A, that which they will have at the earth’s distance. Then

F = P when

a = 34 centims.

If' the radii of the bodies are less than the values found for equality of ¥ and P in
the different cases, the net effect is repulsion.

The ratio of I to P is inversely as the square of the radius, so that, as the radii are
decreased from the values giving F = P, the radiation repulsion soon becomes
enormously greater than the gravitation pull, and the latter may be neglected in
comparison. Thus for two drops of water at 300° A in a zero enclosure, with radii
0:001 centim., the pressure is nearly 400,000,000 times the pull.

It is not, however, that the radiation force is great, or even its acceleration. The
force becomes exceedingly minute, but the gravitation much more minute.

Thus consider two drops of water at 300° placed in a zero enclosure at a distance
d = 10a apart. Our assumption of parallel radiation from one to the other is now

only a rough approximation, but the result will be of the right order.

The radiation push is #a*R/Ud? and the acceleration is 3aR/4Ud? = ]:)” X
) [0 147

approximately.

This only becomes considerable when the drops approach molecular dimensions,
and long before this they cease to absorb fully the stream of momentum falling on
them. Still, even molecules are selective absorbers, and absorb especially each other’s
radiations. And we may expect that if two gas molecules collide and set each other
radiating much more violently than before, they will be practically in an enclosure
of much lower temperature than their own, and their mutual radiation may result in
very rapid repulsion—repulsion of the order of the fourth power of the temperature
reached.

Radiation Pressure between Small Bodies at Different Distances from the Sun.

We have seen above, that if two small spheres of density 55 are at the distance of
the earth from the sun, their gravitation will be balanced by their radiation pressure
when the radius of each is 3'4 centims. Now the balancing radius is proportional to
the square of the temperature, that is, inversely proportional to the distance, since the
temperature (Part 1.) is inversely as the square root of the distance. Thus, at the
distance of Mercury, the radii would be about 9 centims. ; a million miles from the
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sun’s surface they would be about 200 centims. ; out at Neptune they would be
about 1 millim. ‘

We see then that the mutual action between small bodies of density that of the
earth, will, at different distances, change sign for different sizes of body, ranging from
something of the order of 4 metres diameter near the sun to the order of 2 millims.
diameter at the distance of Neptune. A ring of small planets, each of radius
34 centims., and density 5°5, would move round the sun at the distance of the earth
without net mutual attraction or repulsion, and each might be regarded as moving
independently of the rest. It appears possible that if Saturn is hot enough,
considerations of this kind may apply to his rings. .

The repulsion between small colliding bodies, even if not heated by the sun, must
lead to some delay in their final aggregation. This is obvious when there are only
two small bodies, and their temperature is very considerably raised by the collision.
But there is also delay, if instead of a single pair we suppose two swarms to collide.
Near the boundary of the colliding region, a body will experience radiation pressure
chiefly on one side, and will tend to be driven out of the system. Of course, if the
swarms are so dense that a member near the outside cannot see through the rest,
this effect will be less. A body in front of another entirely screens its radiation,
but the gravitation is not screened. Hence, a body mnear the boundary of a densely-
packed region of collision may be repelled only by the colliding bodies just round it,
while it will be attracted by all; or, to put the same idea in another way, a body in
a spherical swarm of uniform temperature will only be pulled equally in all directions
at the centre of the swarm, but it will be equally repelled in all directions as soon as
it is sufficiently deep to be surrounded by its fellows wherever, so to speak, it looks.

Inequality of Action and Reaction between Two Mutually Radiating Bodies.

We have seen that two distant spheres push each other with forces #a*6*R/U d?
and 7a®6*R//U d?, and that these, though opposite, are not equal unless R = R'.

It would be easy to imagine cases in which the forces were not even opposite or in
the same directions. At first sight, then, it would appear that we have two bodies
acting upon each other with unequal forces, but of course this statement is inexact.
The bodies do not act upon each otherat all; each sends out a stream of momentum
into the medium surrounding it. Some of this momentum is ultimately intercepted by
the other, and in its passage the momentum belongs neither to one body nor to the
other. If we assume that the momentum is conserved, and of course everything in
the methods of this paper depends on that assumption, the action on one of the
bodies is equal and opposite to the reaction on the light-bearing medium contiguous
to it. There is no failure of the law of action and reaction, but an extension of our
idea of matter to include the medium. There should be no difficulty in this
extension ; indeed, we -have made it long ago in endowing the medium with energy-
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544 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

carrying properties. Whether the momentum in the medium is in the form of mass
m moving with velocity © in the direction of propogation ig perhaps open to doubt.
We may, perhaps, have different forms of momentum just as we may have different
forms of energy, and possibly we ought not to separate the momentum in radiation
into the factors m and v, but keep it for the present as one quantity M.

An interesting example of inequality of the radiation forces on two mutually
radiating bodies is afforded by two equal spheres, for which, at a given temperature,
the radiation push F balances the gravitation pull P. Raise one in temperature so
that the push on the other becomes . Lower the other so that the push on the
first becomes F”, but adjust so that

F 4 B = 2F = 2P,
then

P—~TF'=F —P.
There will then be equal accelerations of the two in the same, not in opposite
directions, and a chase will begin in the line joining the centres, the hotter chasing
the colder. TIf the two temperatures could be maintained, the velocity would go on
increasing ; but the increase would not be indefinitely great, masmuch as a Doppler
effect would come into play. Each sphere moving forward would crowd up against
the radiation it emitted in front, and open out from the radiation it emitted back-
wards. This would increase the front and decrease the back pressure, and ultimately
the excess of front pressure would balance the accelerating force due to mutual
radiation.

Let us examine the effect of motion of a radiating surface on the pressure of its
radiation against it.

Application of Dorerer’'s Principle to the Radiation Pressure against
a Moving Surface.

If a unit area A, fig. 4, is moving with velocity % in any direction AB, making
angle ¢ with its normal AN, the effect on the energy density in the stream of
radiation issuing in any direction AP is two-fold. If the
motion is such as to shorten AP, the waves and their
energy are crowded up into less space, and if such as
to lengthen AP, they are opened out. At the same time,
in the one case A is doing work against the radiation
pressure and in the other is having work done on it. We
shall assume, as in the thermodynamic theory of radiation,

N"‘““-u:\ H

that this work adds to or subtracts from the energy of 4 Fio. 4
g 4.

radiation. Both effects (1) the crowding, and (2) the
work done, or the reverse of each, combine to alter the energy and therefore the
radiation pressure. We have no data by which we can determine whether the
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motion alters the rate at which the surface is emitting radiation, but it appears worth
while to trace consequences on the assumption that the radiation goes on as if the
surface were at rest,* but that it is crowded up into less space or spread over more,
and that we can superpose on this the energy given out to, or taken from, the stream by
the work done by or on the moving surface by the radiation pressure. This work can
evidently be calculated to the first order of approximation by supposing the pressure
equal to its value when the surface is at rest.

Let us draw from A as centre a sphere of radius U, equal to the velocity of radiation.
The energy which, in a system at rest. would be radiated into a cone with A as vertex,
length U, and solid angle dw, in the direction AP making y with the direction of
motion AB, will now be crowded up into a cone of length U — w cos y, since w cos
is the velocity of A in the direction AP. We shall suppose that «/U is very small.
Hence the energy density in the cone is increased in the ratio U 4 cosy : U or by
the factor 1 + u cos x/U.

Considering now the effect of the work done, the force on A due to the stream in
dw is N cos 8 dw/U, and the work done in one second is (N cos 8 do/U) X u cos x.

When A is at rest the energy in this cone is

N cos 0 do.
When A is moving it is increased to

N cos 0 dw

Ncosfdow + - T

U COS X,
that is
Ncosﬁdw<1 +uc{c} >

Thus the effect of the work done is equal to that of the crowding and the energy
density on the whole is increased in the ratio

21 co8 X

14 U

The pressure is increased in the ratio of the energy density. Then the force on A
due to the radiation through dw is increased from

N cos 0 dw N cos Hdw(
- to . L 4 =
U U
* Added August 20, 1903.—Since the above was written Professor LARMOR has pointed out to me that
the results obtained in the text from this assumption, along with the hypothesis of crowding of the
radiation and its increase by an amount equivalent to the work of the radiation pressure, can be justified
by an argument based on the following considerations. A perfect reflector moving with uniform speed in
an enclosure, itself also moving at that speed, and so in a steady state, must send back as much radiation
of every kind as a full radiator in its place. Now the electrodynamics of perfect reflexion are known;
hence the effect of motion of a full radiator on the amount of its radiation can be determined. The result
is equivalent to the statement that the amplitudes of the excursions of the optical vibrators are the same
at. the same temperature whether the source to which they belong is moving or not.

VOL, CCIL.—A. 4 A
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546 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

If we resolve this along the normal to the surface A and integrate over the
hemisphere we obtain the total normal pressure. As we only want to know the
change in pressure P we may neglect the first term which gives the pressure on A at
rest, and we have

— [Necos?d ~2ucosy
P = !' U U do.
If ¢ 1s the angle between the normal planes through B and P we have

cos y = ¢0s 0 cos ¢ + sin §sin ¢ cos ¢.

Putting de = sin 8 d6 dé,

P = [2 J% 2UN cos® 0 sin 0 (cos 0 cos ¢ + 20 sin y cos ¢) df dep
Jodo U?
= TNucosy Ry cosy
= 02 ="

The change in the tangential stress is evidently in the direction AC, that of the
component of v in the plane of A.

We may therefore resolve each element of tangential stress in the direction AC.
Omitting the first term again, since in this case it disappears on integration, the
element due to dw in the direction AP will contribute

Ncos 0 sin flcos p  2u cosy
U U

dow,

and integrating over the hemisphere we have

T= jz jzw 2{3}? cos 8 sin® 0 cos ¢ (cos 6 cos + sin O sin i cos ) df dep
0J0 ©
— mNusing  _ Rusiny
T 2u 20

Force on o Sphere moving with Velocity “u” in a Gwen Direction.
14 )

If a sphere, radius «, is moving with velocity w, we may from symmetry resolve the
forces on each element in the direction of motion. The resolutes will be P cos ¢ and
Tsin . Evidently it is sufficient to integrate over the front hemisphere and then
double the result. We have the

i 2 T2 4 .
Retarding Force = 2 S; <B@€;§»l’b + Ruz%% ) 2ma® sin ¢ dis
Ru ;
= % e - o,
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 547

It is noteworthy that one half of this is due to the normal, the other half to the
tangential stresses. 4
If the sphere has density p the acceleration is obtained by dividing by $wa®p, then

dufdt = — 2Ru/U?pa.

Lfiect on Rotation.

If the sphere radius @ is rotating with angular velocity w, then any element of the
surface N from the equator is moving with linear velocity at o cos X in its own plane.
This does not affect the normal pressure, but it introduces a tangential stress

opposing the motion ,
Ru/2U?% = Raw cos A/2U~

Taking moments round the axes and integrating over the sphere, we obtain a
couple

™

$mad. L oP - = !’“ 2ma® cos® N d\,
-

o

whence H
dw/dt = — & Rw/2U%0.

The rate of diminution of w is therefore of the same order as that of .

To obtain an idea of the magnitude of the retardation of a moving sphere, let us
suppose that one is moving through a stationary medium. Let its radius be
a = 1 centim., its density p = 5°5, its temperature 300° A.

Then
ldu _ 2% 532X 107 x 300*
wdt 9 X 10% x 55
=175 X 10716,

This will begin to affect the velocity by the order of 1 in 10,000 in, say, 10'* seconds,
or taking the year as 315 X 107 seconds, in about 30,000 years.

The effect is inversely as the radius, so that a dust particle 0°001 centim. radius
will be equally affected in 30 years.

The effect is as the fourth power of the temperature, so that with rising tempera-
ture it becomes rapidly more serious.

Equation to the Orbit of a Small Spherical Absorbing Particle Moving in
a Stationary Medwwm Round the Sun.

It is evident from the above result, that the effect of motion on radiation pressure

may be very considerable in the case of a small absorbing particle moving round the sun.

We shall take the particle as spherical, of radius ¢ and distance » from the sun. We

shall suppose the radius so small that the particle is of one temperature throughout, the
4 A2
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248 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM :

temperature due to the solar radiation which it receives, but that it is still so large
as to be attracted much more than it is repelled by the sun. Both attraction and
repulsion are inversely as the square of the distance, so that we shall have a central
force which we may put as producing acceleration A/r®, where A is constant.

We know that at the distance of the earth, putting » = b, A/b* = 0°59 centim. sec.?,
say 0'6 centim./sec.® Then A = 0'66% The force acting against the motion
produces retardation — 2Ru/U?pa.

If S is the solar constant at the distance b, its value at distance » 1s

Sb* /2,
Putting
° dnd®R = wa® SH¥/r?

R = (5/4) (6%,
then the acceleration in the line of motion is

S w _ Ts

T2 BT T

where T = S0%/2U%pa, and § is now written for the velocity w.
The accelerations along and perpendicular to the radius vector give the equations

.. ; A Tsdr
—_f = — s ar
Vo BT e (1),
1 d OO\ — T’% /]«da ¢
ca0= g o ()
From (2) we get
dt di
whence _
P=C—=T0 . . . . . . ... .3,

where C is the constant of integration.
If #1is 0 when ¢ = 0, then C is the initial value of 120, Further, as 6 increases
26 decreases and is 0 when 8§ = C/T.  This gives a limit to the angle described.
Equation (1) may be written
P rP= — A= Trf L (4)
Putting u for »* :

. d')' . l d'lb .— « (j{:{v{/ ] .

. 2y -
=10~ (=10 DL

=T(C —10)w du (¢ — TORwu? od*u

FPu g .
df) 4 *(102/ f[OI}_. (3)
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 549

Substituting in (4)

il_z.’i + T __.___._~A' s

do? —(C—=TH)
This can probably only be integrated by approximation. We can see the effect on
the motion at the beginning by putting

d*u A/ 2T
Brr=olirge)

since T/C is small if’ we begin at the distance of the earth and with a particle baving
the velocity of the earth.
An integral of this is
u::»é<1 +£'—rl9>
Cc? C
The complementary function will be periodic and may be omitted. To the order of
approximation adopted

r=5-%
T A C

0> and P = — -ggz 0,

Then initially .
7jr = — (2T/C) 6.

In applying these results, we may note that T = Sb*/2U%q is constant for all
distances, and that b, the earth’s distance, 1s 493 U. Inserting the value of the
solar constant, 0175 X 107, and taking p = 5°5, we get

T=39 x 10, oL

C will depend on the initial conditions. Assuming that the hody considered is
initially moving in a circle, then, at the beginning

wﬂ-‘zzﬁ or = A/ ==

since at »* = b the acceleration to the centre 1s 0°G.
Then -
C = 720 = /06b%.

Substituting these values in #/r we have

T8 X 10

9 %0

This gives only the initial value of;’; and cannot be taken to hold for a time which

will make T26?/C* appreciable. But by (3) we see that » = 0 if § = C/T, so that
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550 PROFESSOR J. H. POYNTING ON RADIATION IN THE SOLAR SYSTEM:

/27T is a superior limit to the number of revolutions, even if’ we suppose the way
clear right up to the centre.
Putting the numerical values we get

C/27T = 61ria.
Suppose, for example, that » = b = 493 X 3 X 10Y; « = 1, then
= — 85 X 101,

It we multiply by 3:15 X 107, the seconds in a year, (7/7) X 3'15 X 10'=1"1 X107,

This implies that a sphere I centim. radius and density 55, starting with the
velocity of the earth, and at its distance from the sun, will move inwards
Tosoo of its distance in about 10,000 years. [t cannot in all make so many as
61 X b* = 235 X 108 revolutions.

If we put @ = 0°001 centim., since the effects are inversely as «, then its distance
will decrease by about 1 in 10,000 in 10 years, and it cannot make in all so many
as 235 X 10° revolutions. .

It instead of starting from the distance of the earth, the particle starts from,
say, 0°1 the distance, the effect in the radius is 100 times as great and the number
of revolutions is /10 times less. Then with radius | centim. the distance decreases

by in 100 years, and there are not so many as 80,000 revolutions, while

B
10,000

with radius 0°001 centim. the distance decreases by in 0°1 year, and there are

1 07:5176
not so many as 80 revolutions.

Small particles, therefore, even of the order of I centim. radius, would be drawn
into the sun, even from the distance of the earth, in times not large compared with
geological times, and dust particles if large enough to absorb solar radiation would be
swept in in a time almost comparable with historical times. Near the sun the effects
are vastly greater. The application to meteoric dust in the system is obvious.

There should be a similar effect with dust and small particles circulating round the
earth. If] for example, any of the Krakatoa dust was blown out so far beyond the
appreciable atmosphere, and was given such motion that the particles became satellites
to the earth, at no long time the dust will return. A ring of dust particles moving
round a planet and receiving heat either from the sun or from the planet will
tend to draw in to the planet.

[Note added October 31.—Since the foregoing paper was printed [ have re-
examined the theory of the pressure on a fully radiating surface when i motion, and
have come to the conclusion that the change in pressure due to the motion is only
half as great as that obtained on p. 545. In that investigation the pressure was
assumed to be equal to the energy deusity, whether the surface was at rest or in
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ITS EFFECT ON TEMPERATURE AND ITS PRESSURE ON SMALL BODIES. 551
motion, whereas it appears, if the following mode of treatment is correct, that the

.o . . %
pressure on a radiating surface moving forward is only 1 —

U of the energy density
of the radiation emitted.

Let us suppose that a surface A, a full radiator, is moving with velocity » towards
a full absorber B, which, with the surroundings, we will suppose at 0° A. Consider
for simplicity a parallel pencil issuing normal from A with velocity U towards B.
Let the energy density in the stream from A be K when A is at rest, and E’ when it
is moving. Let the pressure on A be p = K when it is at rest, and p’ when it is
moving.  When moving, A is emitting a stream of momentum p’ per second and this
momentum ultimately falls on B. Let A start radiating and moving at the same
instant ; let it move a distance ¢ towards B, and then let it stop radiating and
moving. It emits momentum p’ per second for a time d/u and therefore emits total
momentum p’d/u. Since B is at rest, the pressure on it, the momentum which it
receives per second, is . But since A is following up the stream sent out, B does
not receive through a period as long as d/u, but for a time less by d/U. If we assume
that the total momentum received by B is equal to the total sent out by A, we have

p'dju = E (dju — d/U),
or

p =T (1 — u/U).

To find E in terms of E we must make some assumption as to the effect of the
motion on the radiation emitted. In the paper I have assumed that the emitting
surface converts the same amount of its internal energy per second into radiant energy
as when it is at rest, but that p'u of the energy of motion of the radiating mass is
also converted into radiant energy. Since the radiation emitted in one second is
contained in length U — u, we have

B (U —u) = EU 4 p'u = BU + &/ <U[‘]‘“) %,

whence

U2
T = Ez_ﬁl_%)é = E (1 4 2u/U).

The same result is obtained if we assume that the amplitude of the emitted waves
is the same whether the surface is moving or not, and that the energy density is
inversely as the square of the wave-length for given amplitude.

We have, therefore, if the above application of the equality of action and reaction
is justified,

r=w(1="\=5. U —,(14+2
p~E<1 U>“’EU—u”’p<1+U>'

In a similar way we can find the effect of motion of an absorber on the pressure
against it due to the incident radiation.
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552 PROFESSOR J. H, POYNTING ON RADIATION IN THE SOLAR SYSTEM.

Let a stream of energy density Ii be incident on a fully absorbing surface moving
towards the source with velocity w. Let the surface be at 0°A, so as to obtain the
effect of the incident radiation only. When the surface is at rest, we may regard the
stream as bringing up momentum E per second, or as containing momentum ot
density E/U brought up with velocity U to it. 1If the surface is moving towards
the source, it takes up in one second the momentum in length U 4, or receives

E

o (U + u), and the pressure on it is p’ = K (l + ﬁ\::/ (R Al

U’
It is easy to show that when a perfect reflector is moving, the pressure upon it is
21
altered from p to p (] + >
In the paper, the case of a full radiator in an enclosure at zero has alone heen

Uo11+

at x to the line of radiation. Hence the forces obtained in the paper when the factor

% cos X

considered, so that the correcting factor is 1 + when the motion is

was 1 -4 %Zf are all double those obtained with the factor now given. The process of

drawing in small particles to the sun is correspondingly lengthened out.

It is, perhaps, worth noting that the motion of a body round the sun produces a
small aberration effect. If the body is a sphere, the sunlight does not fall on the
hemisphere directly under the sun, but on one turned round through an angle /U-
The pressure of the radiation, thou<rh still straight from the sun, does not act through

the centre but through a point x radius of sphere in front of the centre. Thus,

?U’
in the case of the earth, it will tend to stop the rotation. But the effect is so minute
that if present conditions as to distance and radiation were maintained, it would take
something of the order of 10 years to stop the whole of the rotation. |
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